首页 >> 你问我答 >

微分算子求微分方程特解(微分算子)

2022-09-25 22:01:01

问题描述:

微分算子求微分方程特解(微分算子),跪求好心人,拉我一把!

最佳答案

推荐答案

2022-09-25 22:01:01

大家好,小金来为大家解答以上的问题。微分算子求微分方程特解,微分算子这个很多人还不知道,现在让我们一起来看看吧!

1、具有线性性质的一类映射.算子是函数概念的发展和拓广,设X,Y 为数域K上的线性空间,以D(T)Ì蘕为定义域,取值于Y 的映射统称为算子.进而,若D(T)为线性子集,算子T具有线性性质:"x ,y∈D(T),"a ,β∈K ,有T(ax+βy)=aT(x)+βT(y),则称T为线性算子.熟悉的积分算子Tf(x)=f(t)dt,"f∈C[a,b]={f:f为定义在[a,b]上的连续函数}是从C〔a,b〕到自身的线性算子,微分算子是从={f:f为定义在[a,b]上具有一阶连续导数的连续函数}到C〔a,b〕 的线性算子.线性算子是线性泛函分析研究的基本对象之一,若X、Y为线性赋范空间,则可利用线性关系简化对连续性的讨论,此外,有限维空间上的线性算子必定连续,并且对线性算子来说,其连续性与有界性是等价的. 勉强帮你找的,尽管我不知道是什么,..。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章