跳动百科

特征值与特征向量的实际应用(特征值与特征向量例题)

宁霄克   来源:

大家好,我是小跳,我来为大家解答以上问题。特征值与特征向量的实际应用,特征值与特征向量例题很多人还不知道,现在让我们一起来看看吧!

1、可以告诉我原题是什么吗?我觉得里面有你的理解错误

2、特征向量不是解向量,这个是必须弄清楚的,你可能弄错了吧?

3、对于解向量,我倒是有一个诀窍:

4、不妨以x1为变量,x2为自变量

5、(自变量的个数和矩阵的秩数以及矩阵的本身的行列数有关)(比方说A是一个n阶矩阵,秩A=r,则基础解系就是n-r个线性无关的解向量)

6、令x1=a

7、则有{x1=a

8、 {x2=(-1/2)a

9、注意右边的系数了吗?

10、诀窍就在这里,把前面的系数并排写就对了!

11、所以说对于多元矩阵的也不怕了,

12、只要把相同的未知元对齐,然后将系数统统写下来变成矩阵就可以了

13、这里显然解就是(1)

14、 (-1/2)

15、当然解其实有无数个,所以标准解前面会加个λ,

16、这个题只要举出其中一个解就OK,很显然你的解也是对的

17、把我的解中取λ=-2,就是你的解

18、但是你写的怎么还有一个不同的线性方程??

19、原矩阵的秩数为1怎么可能有两个不同的方程??

20、你的第一个可能弄错了吧?

本文到此讲解完毕了,希望对大家有帮助。